FaheemKalwar@Yahoo.Com

JavaScript Variables

As with algebra, JavaScript variables are used to hold values or expressions.

A variable can have a short name, like x, or a more descriptive name, like carname.

Rules for JavaScript variable names:

· Variable names are case sensitive (y and Y are two different variables)

· Variable names must begin with a letter or the underscore character

Note: Because JavaScript is case-sensitive, variable names are case-sensitive.

Example

A variable's value can change during the execution of a script. You can refer to a variable by its name to display or change its value.

This example will show you how

Declaring (Creating) JavaScript Variables

Creating variables in JavaScript is most often referred to as "declaring" variables.

You can declare JavaScript variables with the var statement:

	var x;

var carname;

After the declaration shown above, the variables are empty (they have no values yet).

However, you can also assign values to the variables when you declare them:

	var x=5;

var carname="Volvo";

After the execution of the statements above, the variable x will hold the value 5, and carname will hold the value Volvo.

Note: When you assign a text value to a variable, use quotes around the value.

Assigning Values to Undeclared JavaScript Variables

If you assign values to variables that have not yet been declared, the variables will automatically be declared.

These statements:

	x=5;

carname="Volvo";

have the same effect as:

	var x=5;

var carname="Volvo";

Redeclaring JavaScript Variables

If you redeclare a JavaScript variable, it will not lose its original value.

	var x=5;

var x;

After the execution of the statements above, the variable x will still have the value of 5. The value of x is not reset (or cleared) when you redeclare it.

JavaScript Arithmetic

As with algebra, you can do arithmetic operations with JavaScript variables:

	y=x-5;

z=y+5;

The operator = is used to assign values.

The operator + is used to add values.

The assignment operator = is used to assign values to JavaScript variables.

The arithmetic operator + is used to add values together.

	y=5;

z=2;

x=y+z;

The value of x, after the execution of the statements above is 7.

JavaScript Arithmetic Operators

Arithmetic operators are used to perform arithmetic between variables and/or values.

Given that y=5, the table below explains the arithmetic operators:

	Operator
	Description
	Example
	Result

	+
	Addition
	x=y+2
	x=7

	-
	Subtraction
	x=y-2
	x=3

	*
	Multiplication
	x=y*2
	x=10

	/
	Division
	x=y/2
	x=2.5

	%
	Modulus (division remainder)
	x=y%2
	x=1

	++
	Increment
	x=++y
	x=6

	--
	Decrement
	x=--y
	x=4

JavaScript Assignment Operators

Assignment operators are used to assign values to JavaScript variables.

Given that x=10 and y=5, the table below explains the assignment operators:

	Operator
	Example
	Same As
	Result

	=
	x=y
	
	x=5

	+=
	x+=y
	x=x+y
	x=15

	-=
	x-=y
	x=x-y
	x=5

	*=
	x*=y
	x=x*y
	x=50

	/=
	x/=y
	x=x/y
	x=2

	%=
	x%=y
	x=x%y
	x=0

The + Operator Used on Strings

The + operator can also be used to add string variables or text values together.

To add two or more string variables together, use the + operator.

	txt1="What a very";

txt2="nice day";

txt3=txt1+txt2;

After the execution of the statements above, the variable txt3 contains "What a verynice day".

To add a space between the two strings, insert a space into one of the strings:

	txt1="What a very ";

txt2="nice day";

txt3=txt1+txt2;

or insert a space into the expression:

	txt1="What a very";

txt2="nice day";

txt3=txt1+" "+txt2;

After the execution of the statements above, the variable txt3 contains:

"What a very nice day"

Adding Strings and Numbers

Look at these examples:

	Example

x=5+5;
document.write(x);

x="5"+"5";
document.write(x);

x=5+"5";
document.write(x);

x="5"+5;
document.write(x);

The rule is:

If you add a number and a string, the result will be a string.

The operator = is used to assign values.

The operator + is used to add values.

The assignment operator = is used to assign values to JavaScript variables.

The arithmetic operator + is used to add values together.

	y=5;

z=2;

x=y+z;

The value of x, after the execution of the statements above is 7.

JavaScript Arithmetic Operators

Arithmetic operators are used to perform arithmetic between variables and/or values.

Given that y=5, the table below explains the arithmetic operators:

	Operator
	Description
	Example
	Result

	+
	Addition
	x=y+2
	x=7

	-
	Subtraction
	x=y-2
	x=3

	*
	Multiplication
	x=y*2
	x=10

	/
	Division
	x=y/2
	x=2.5

	%
	Modulus (division remainder)
	x=y%2
	x=1

	++
	Increment
	x=++y
	x=6

	--
	Decrement
	x=--y
	x=4

JavaScript Assignment Operators

Assignment operators are used to assign values to JavaScript variables.

Given that x=10 and y=5, the table below explains the assignment operators:

	Operator
	Example
	Same As
	Result

	=
	x=y
	
	x=5

	+=
	x+=y
	x=x+y
	x=15

	-=
	x-=y
	x=x-y
	x=5

	*=
	x*=y
	x=x*y
	x=50

	/=
	x/=y
	x=x/y
	x=2

	%=
	x%=y
	x=x%y
	x=0

The + Operator Used on Strings

The + operator can also be used to add string variables or text values together.

To add two or more string variables together, use the + operator.

	txt1="What a very";

txt2="nice day";

txt3=txt1+txt2;

After the execution of the statements above, the variable txt3 contains "What a verynice day".

To add a space between the two strings, insert a space into one of the strings:

	txt1="What a very ";

txt2="nice day";

txt3=txt1+txt2;

or insert a space into the expression:

	txt1="What a very";

txt2="nice day";

txt3=txt1+" "+txt2;

After the execution of the statements above, the variable txt3 contains:

"What a very nice day"

Adding Strings and Numbers

Look at these examples:

	J

	

The rule is:

If you add a number and a string, the result will be a string.

Comparison Operators

Comparison operators are used in logical statements to determine equality or difference between variables or values.

Given that x=5, the table below explains the comparison operators:

	Operator
	Description
	Example

	==
	is equal to
	x==8 is false

	===
	is exactly equal to (value and type)
	x===5 is true
x==="5" is false

	!=
	is not equal
	x!=8 is true

	>
	is greater than
	x>8 is false

	<
	is less than
	x<8 is true

	>=
	is greater than or equal to
	x>=8 is false

	<=
	is less than or equal to
	x<=8 is true

How Can it be Used

Comparison operators can be used in conditional statements to compare values and take action depending on the result:

	if (age<18) document.write("Too young");

You will learn more about the use of conditional statements in the next chapter of this tutorial.

Logical Operators

Logical operators are used to determine the logic between variables or values.

Given that x=6 and y=3, the table below explains the logical operators:

	Operator
	Description
	Example

	&&
	and
	(x < 10 && y > 1) is true

	||
	or
	(x==5 || y==5) is false

	!
	not
	!(x==y) is true

Conditional Operator

JavaScript also contains a conditional operator that assigns a value to a variable based on some condition.

Syntax
	variablename=(condition)?value1:value2

Example
	greeting=(visitor=="PRES")?"Dear President ":"Dear ";

If the variable visitor has the value of "PRES", then the variable greeting will be assigned the value "Dear President " else it will be assigned "Dear".

	
	

Conditional statements in JavaScript are used to perform different actions based on different conditions.

Examples

Switch statement
How to write a switch statement.

The JavaScript Switch Statement

You should use the switch statement if you want to select one of many blocks of code to be executed.

Syntax
	switch(n)

{

case 1:

 execute code block 1
 break;

case 2:

 execute code block 2
 break;

default:

 code to be executed if n is

 different from case 1 and 2

}

This is how it works: First we have a single expression n (most often a variable), that is evaluated once. The value of the expression is then compared with the values for each case in the structure. If there is a match, the block of code associated with that case is executed. Use break to prevent the code from running into the next case automatically.

Example
	<script type="text/javascript">

//You will receive a different greeting based

//on what day it is. Note that Sunday=0,

//Monday=1, Tuesday=2, etc.

var d=new Date();

theDay=d.getDay();

switch (theDay)

{

case 5:

 document.write("Finally Friday");

 break;

case 6:

 document.write("Super Saturday");

 break;

case 0:

 document.write("Sleepy Sunday");

 break;

default:

 document.write("I'm looking forward to this weekend!");

}

</script>

In JavaScript we can create three kinds of popup boxes: Alert box, Confirm box, and Prompt box.

Examples

Alert box
Alert box with line breaks
Confirm box
Prompt box

Alert Box

An alert box is often used if you want to make sure information comes through to the user.

When an alert box pops up, the user will have to click "OK" to proceed.

Syntax:
	alert("sometext");

Confirm Box

A confirm box is often used if you want the user to verify or accept something.

When a confirm box pops up, the user will have to click either "OK" or "Cancel" to proceed.

If the user clicks "OK", the box returns true. If the user clicks "Cancel", the box returns false.

Syntax:
	confirm("sometext");

Prompt Box

A prompt box is often used if you want the user to input a value before entering a page.

When a prompt box pops up, the user will have to click either "OK" or "Cancel" to proceed after entering an input value.

If the user clicks "OK" the box returns the input value. If the user clicks "Cancel" the box returns null.

Syntax:
	prompt("sometext","defaultvalue");

A function is a reusable code-block that will be executed by an event, or when the function is called.

Examples

Function
How to call a function.

Function with arguments
How to pass a variable to a function, and use the variable in the function.

Function with arguments 2
How to pass variables to a function, and use these variables in the function.

Function that returns a value
How to let the function return a value.

A function with arguments, that returns a value
How to let the function find the product of two arguments and return the result.

JavaScript Functions

To keep the browser from executing a script when the page loads, you can put your script into a function.

A function contains code that will be executed by an event or by a call to that function.

You may call a function from anywhere within the page (or even from other pages if the function is embedded in an external .js file).

Functions can be defined both in the <head> and in the <body> section of a document. However, to assure that the function is read/loaded by the browser before it is called, it could be wise to put it in the <head> section.

Example
	<html>

<head>

<script type="text/javascript">

function displaymessage()

{

alert("Hello World!");

}

</script>

</head>

<body>

<form>

<input type="button" value="Click me!"

onclick="displaymessage()" >

</form>

</body>

</html>

If the line: alert("Hello world!!") in the example above had not been put within a function, it would have been executed as soon as the line was loaded. Now, the script is not executed before the user hits the button. We have added an onClick event to the button that will execute the function displaymessage() when the button is clicked.

You will learn more about JavaScript events in the JS Events chapter.

How to Define a Function

The syntax for creating a function is:

	function functionname(var1,var2,...,varX)

{

some code
}

var1, var2, etc are variables or values passed into the function. The { and the } defines the start and end of the function.

Note: A function with no parameters must include the parentheses () after the function name:

	function functionname()

{

some code
}

Note: Do not forget about the importance of capitals in JavaScript! The word function must be written in lowercase letters, otherwise a JavaScript error occurs! Also note that you must call a function with the exact same capitals as in the function name.

The return Statement

The return statement is used to specify the value that is returned from the function.

So, functions that are going to return a value must use the return statement.

Example
The function below should return the product of two numbers (a and b):

	function prod(a,b)

{

x=a*b;

return x;

}

When you call the function above, you must pass along two parameters:

	product=prod(2,3);

The returned value from the prod() function is 6, and it will be stored in the variable called product.

The Lifetime of JavaScript Variables

When you declare a variable within a function, the variable can only be accessed within that function. When you exit the function, the variable is destroyed. These variables are called local variables. You can have local variables with the same name in different functions, because each is recognized only by the function in which it is declared.

If you declare a variable outside a function, all the functions on your page can access it. The lifetime of these variables starts when they are declared, and ends when the page is closed.

Loops in JavaScript are used to execute the same block of code a specified number of times or while a specified condition is true.

Examples

For loop
How to write a for loop. Use a For loop to run the same block of code a specified number of times.

Looping through HTML headers
How to use the for loop to loop through the different HTML headers.

JavaScript Loops

Very often when you write code, you want the same block of code to run over and over again in a row. Instead of adding several almost equal lines in a script we can use loops to perform a task like this.

In JavaScript there are two different kind of loops:

· for - loops through a block of code a specified number of times

· while - loops through a block of code while a specified condition is true

The for Loop

The for loop is used when you know in advance how many times the script should run.

Syntax
	for (var=startvalue;var<=endvalue;var=var+increment)

{

 code to be executed
}

Example
Explanation: The example below defines a loop that starts with i=0. The loop will continue to run as long as i is less than, or equal to 10. i will increase by 1 each time the loop runs.

Note: The increment parameter could also be negative, and the <= could be any comparing statement.

	<html>

<body>

<script type="text/javascript">

var i=0;

for (i=0;i<=10;i++)

{

document.write("The number is " + i);

document.write("
");

}

</script>

</body>

</html>

Result
	The number is 0

The number is 1

The number is 2

The number is 3

The number is 4

The number is 5

The number is 6

The number is 7

The number is 8

The number is 9

The number is 10

The while loop

The while loop will be explained in the next chapter.

Loops in JavaScript are used to execute the same block of code a specified number of times or while a specified condition is true.

Examples

While loop
How to write a while loop. Use a while loop to run the same block of code while a specified condition is true.

Do while loop
How to write a do...while loop. Use a do...while loop to run the same block of code while a specified condition is true. This loop will always be executed at least once, even if the condition is false, because the statements are executed before the condition is tested.

The while loop

The while loop is used when you want the loop to execute and continue executing while the specified condition is true.

	while (var<=endvalue)

{

 code to be executed
}

Note: The <= could be any comparing statement.

Example
Explanation: The example below defines a loop that starts with i=0. The loop will continue to run as long as i is less than, or equal to 10. i will increase by 1 each time the loop runs.

	<html>

<body>

<script type="text/javascript">

var i=0;

while (i<=10)

{

document.write("The number is " + i);

document.write("
");

i=i+1;

}

</script>

</body>

</html>

Result
	The number is 0

The number is 1

The number is 2

The number is 3

The number is 4

The number is 5

The number is 6

The number is 7

The number is 8

The number is 9

The number is 10

The do...while Loop

The do...while loop is a variant of the while loop. This loop will always execute a block of code ONCE, and then it will repeat the loop as long as the specified condition is true. This loop will always be executed at least once, even if the condition is false, because the code is executed before the condition is tested.

	do

{

 code to be executed

}

while (var<=endvalue);

Example
	<html>

<body>

<script type="text/javascript">

var i=0;

do

{

document.write("The number is " + i);

document.write("
");

i=i+1;

}

while (i<0);

</script>

</body>

</html>

Result
	The number is 0

There are two special statements that can be used inside loops: break and continue.

Examples

Break statement
Use the break statement to break the loop.

Continue statement
Use the continue statement to break the current loop and continue with the next value.

JavaScript break and continue Statements

There are two special statements that can be used inside loops: break and continue.

Break
The break command will break the loop and continue executing the code that follows after the loop (if any).

Example
	<html>

<body>

<script type="text/javascript">

var i=0;

for (i=0;i<=10;i++)

{

if (i==3)

{

break;

}

document.write("The number is " + i);

document.write("
");

}

</script>

</body>

</html>

Result
	The number is 0

The number is 1

The number is 2

Continue
The continue command will break the current loop and continue with the next value.

Example
	<html>

<body>

<script type="text/javascript">

var i=0

for (i=0;i<=10;i++)

{

if (i==3)

{

continue;

}

document.write("The number is " + i);

document.write("
");

}

</script>

</body>

</html>

Result
	The number is 0

The number is 1

The number is 2

The number is 4

The number is 5

The number is 6

The number is 7

The number is 8

The number is 9

The number is 10

The for...in statement is used to loop (iterate) through the elements of an array or through the properties of an object.

Examples

For...In statement
How to use a for...in statement to loop through the elements of an array.

JavaScript For...In Statement

The for...in statement is used to loop (iterate) through the elements of an array or through the properties of an object.

The code in the body of the for ... in loop is executed once for each element/property.

Syntax
	for (variable in object)

{

 code to be executed
}

The variable argument can be a named variable, an array element, or a property of an object.

Example
Using for...in to loop through an array:

	<html>

<body>

<script type="text/javascript">

var x;

var mycars = new Array();

mycars[0] = "Saab";

mycars[1] = "Volvo";

mycars[2] = "BMW";

for (x in mycars)

{

document.write(mycars[x] + "
");

}

</script>

</body>

</html>

Events are actions that can be detected by JavaScript.

Events

By using JavaScript, we have the ability to create dynamic web pages. Events are actions that can be detected by JavaScript.

Every element on a web page has certain events which can trigger JavaScript functions. For example, we can use the onClick event of a button element to indicate that a function will run when a user clicks on the button. We define the events in the HTML tags.

Examples of events:

· A mouse click

· A web page or an image loading

· Mousing over a hot spot on the web page

· Selecting an input box in an HTML form

· Submitting an HTML form

· A keystroke

Note: Events are normally used in combination with functions, and the function will not be executed before the event occurs!

For a complete reference of the events recognized by JavaScript, go to our complete Event reference.

onload and onUnload

The onload and onUnload events are triggered when the user enters or leaves the page.

The onload event is often used to check the visitor's browser type and browser version, and load the proper version of the web page based on the information.

Both the onload and onUnload events are also often used to deal with cookies that should be set when a user enters or leaves a page. For example, you could have a popup asking for the user's name upon his first arrival to your page. The name is then stored in a cookie. Next time the visitor arrives at your page, you could have another popup saying something like: "Welcome John Doe!".

onFocus, onBlur and onChange

The onFocus, onBlur and onChange events are often used in combination with validation of form fields.

Below is an example of how to use the onChange event. The checkEmail() function will be called whenever the user changes the content of the field:

	<input type="text" size="30"

id="email" onchange="checkEmail()">

onSubmit

The onSubmit event is used to validate ALL form fields before submitting it.

Below is an example of how to use the onSubmit event. The checkForm() function will be called when the user clicks the submit button in the form. If the field values are not accepted, the submit should be cancelled. The function checkForm() returns either true or false. If it returns true the form will be submitted, otherwise the submit will be cancelled:

	<form method="post" action="xxx.htm"

onsubmit="return checkForm()">

onMouseOver and onMouseOut

onMouseOver and onMouseOut are often used to create "animated" buttons.

Below is an example of an onMouseOver event. An alert box appears when an onMouseOver event is detected:

	<a href="http://www.w3schools.com"

onmouseover="alert('An onMouseOver event');return false">

FaheemKalwar@Yahoo.Com

